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Fig. 5. Comparison of measured and modeled S-parameters. The left graph is typical characteristics in the linear region; the other is for the saturated region.

equivalent circunit, even for a certain bias condition in saturation
region.

IV. ConcLusioNn

A new nonlinear HEMT model is developed on the basis of the
Curtice model for Harmonic Balance simulation. Terms for leakage
current for subthreshold voltage, drain voltage dependence for knee
voltage, drain conductance and threshold voltage, the transconduc-
tance enhancement by DX centers, and the bias dependence of
capacitance are introduced. By adopting this model for a pseudo-
morphic double-recessed gate HEMT, average errors of 2.6% for dc
current and 10% S-parameters are obtained.
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Quasi-TEM Analysis of Coplanar Waveguides with
an Inhomogeneous Semiconductor Substrate

Jean-Fu Kiang

Abstract— In this paper, we study the normalized wavelength and
attenuation constant of coplanar waveguides with a finite metal thickness.
The substrate is a lossy inhomogeneous insulator-semiconductor, and
the conductor is assumed perfect. Electroquasi-static approximation is
used to derive a Laplace’s equation with a complex permittivity in
each inhomogeneous layer, from which the eigenmodes are obtained.
Proper boundary conditions between contiguous layers are applied to
calculate the charge distribution on the center conductor. The effects of
the insulator depth and semiconductor conductivity on the normalized
wavelength and attenuation constant are analyzed.

1. INTRODUCTION

The doping profile in the semiconductor substrate affects the
propagation characteristics of microstrip lines and coplanar waveg-
uides significantly. In [1] and [2], the propagation characteristics
of coplanar waveguides fabricated on an insulator—semiconductor
substrate have been studied. For Schottky-contact microstrip lines,
the bias voltage applied to the metal line creates a localized depletion
zone around the metallization [3]. Due to the conductive loss in
the semiconductor, slow wave modes with attenuation are observed
[3]-[8]. The slow wave factor and the attenuation constant of either
microstrip lines or coplanar waveguides have been studied using
parallel plate waveguide model [3], full-wave finite element method
[6], finite-difference time-domain method [7]. and method of lines [8].

As long as the cross-section dimension of the coplanar waveguide
is a small fraction of one wavelength, the quasi-TEM analysis can be
applied to model its propagation properties even up to the millimeter
wave range. In [9], an electrostatic formulation is used to calculate
the capacitance and inductance matrices on which the quasi-TEM
analysis is based. Resistive loss due to imperfect conduct has been
studied by using quasi-TEM approach [10] and conformal mapping
technique [11]. In [12], both the semiconductor loss and conductor
loss are considered. Overall, the inhomogeneities of substrate is only
analyzed in [8].
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Fig. 1. Geometrical configuration of a coplanar waveguide with a finite strip
thickness in a lossy inhomogeneous stratified medium.

In this paper, we propose a new approach to solve the poten-
tial distribution of coplanar waveguides on an inhomogeneous and
lossy substrate. The potential in each inhomogeneous layer can be
expressed in terms of only a few eigenmodes which are obtained
by solving the Laplace’s equation with a complex permittivity.
Reflection matrices are also defined to further reduce the number
of unknowns. In contrast, the finite difference and finite element
type of approaches require many unknowns to describe the potential
distribution. The complex charge distribution on the center conductor
is then calculated and used in the subsequent quasi-TEM analysis to
study the normalized wavelength and attenuation constant.

II. FORMULATION

Assuming that the dimension of interest is much smaller than one
wavelength, hence the electric field can be expressed as the gradient
of a potential £ = —Vé. From the charge conservation and the
Ohm’s law, we have V - ¢ E' = iwp. Combining these two equations
with the Gauss’ law, a Laplace’s equation with a complex permittivity
is obtained

V.eVé =0 (1)

where € = ¢ + {0 /w.

In Fig. 1, we show the configuration of a coplanar waveguide
in a lossy inhomogeneous stratified medium. The permittivity and
conductivity in each layer is a piecewise continuous function of »
and is independent of z. Two perfect electric conductor walls are
located at * = 0 and =z = a as the potential reference.

Explicitly, the Laplace’s equation in layer (m) is

— 0 . 0 o?

By the separation of variables, ¢(x, z) can be expressed as a product
P(x)n(z) where

1 d d

Em (ﬂc)d—wém(w)@w(w) = —k*y(x)
d2

Ta(z) =K n(2).

(3)

Next, choose a set of basis functions Sp(z) = /2/asin(a,z)
with o, = pm/a to represent ¢(x). These basis functions satisfy
the orthonormality specification that (S,(z), Sp(x)) = 84, with the
inner product defined over the interval [0, a]. The nth eigensolution
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tn () can thus be expanded by these basis functions as ¥, (r) =
25:1 bnpSp(z). Then, substitute the expansion into (3), take the
inner product of S,(x) with the resulting equation, and apply the
orthonormality property of S,(z)’s to obtain a matrix equation
from which to solve for the eigenvalues k2 and their associated
eigenvectors.

The potential in layer (I) with [ > 1 can be expressed in terms
of the eigenfunctions as

$i(@.2) = Pi(2) - [T Ry +e071] - By @
where z; = z + di, I:i'l = diag.[k1,...,kn], K =
diag.[eik”l,...,eikN”], and ¥i(x) = [W1(x),...,¥n(x)] are

eigensolutions in layer (I). By matching the boundary condition that
the potential and the normal electric flux density are continuous at

z = —dj, a recursive relation between the reflection matrices f%nz’s
can be obtained.
The potential in layer (0) can be expressed as

do(a.2) = Po(z) - e K0% . Ay, 5)

The potential in the two gaps (c1 < z < c1+ap and ez <z <L
c2 + a2) of layer (1) can be expressed as

é1(x, 2)
¢1a($» Z) = V$1/a,1
+ZJ,:];1 Sin(alnxl)[ulne—am 714 v]_nealn’zl]’
C1 S &L S c1 + a1
b1z, 2) = V(1 — z2/az)
+Zi\21 Sin(agnx2)[u2ne—a2nz1 + v2neo¢2nz1]1
C2 S < catas
(6)

where , = z — ¢, and «,, = nw/a, with i = 1,2. Impose the
boundary condition that the potential is continuous at z = —do
z = —du), then take the inner product of & (2 )y (x) (é2(x)2(x))
with the resulting equation to obtain (A) [(B)]. Next, impose the
boundary condition that the normal electric flux density is continuous
at z = —do (= = —dy) over the gaps between the conductors, then
take the inner product of sin(&,x,) with the resulting equation to
obtain (C) [(D)].

The total complex charge per unit length around the center strip,
@, can be calculated by solving (A), (B), (C), and (D). Then,
define the complex capacitance per unit length as C' = Q/V,
and calculate the propagation constant of the quasi-TEM mode as
ky = B + i = wi/ioo/C/Co where Cy is the capacitance per
unit length with the whole stratified medium replaced by free space.

III. NUMERICAL RESULTS

In Fig.2, we show the normalized wavelength and
the attenuation constant of a coplanar waveguide on an
insulator~semiconductor—insulator substrate. Since the diclectric
constant of the semiconductor is higher than that of the top
insulator layer, the effective dielectric constant of the dominant
mode decreases and the normalized wavelength increases as the
semiconductor layer gets thinner. As the semiconductor layer gets
thinner, the electric fields pass through less semiconductor area,
hence the attenuation constant decreases. When ¢, /(¢1 +1t2) is above
0.8, the bottom insulator with high dielectric constant makes the
field distribution shift downward, and the field in the semiconductor
layer becomes stronger. Thus the attenuation constant increases
slightly. The deviation between our results and the reference data
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Fig. 2. Normalized wavelength and attenuation constant of a coplanar wave-
guide on an 1nsulator—semiconductor—insulator substrate (results from [2]).

from [2] is reasonably small considering that the full-wave approach
is used in [2].

In Fig. 3, we show the normalized wavelength of a coplanar
waveguide on an inhomogeneous insulator—semiconductor substrate.
Since the semiconductor attenuates the dominant mode, an insulator
region may be fabricated into the semiconductor substrate to reduce
the loss. Less loss is incurred as the insulator depth increases, hence
the phase velocity increases. However, the attenuation constant in
Fig. 4 shows that the structure with a deeper insulator region has
a higher attenuation constant, which is opposite to what we have
expected.

So, we calculate the propagation constant with the same geomet-
rical and electrical parameters except that the conductivity in the
semiconductor is set to 0.1 U/m. The normalized wavelength shows
little deviation among three different insulator depths because the
loss is smaller than in the case with ¢ = 10° /m. The attenuation
constants are consistent with what we have expected that deeper
insulator gives less loss. We also observe that the attenuation constant
reaches a maximum then decreases as the frequency increases. It is
because the field distribution concentrates more around the center
conductor at high frequencies.

To understand the variation of phase velocity and attenuation
constant with frequency, we analyze the same structure with different
semiconductor conductivities. The results are shown in Figs. 5 and
6. The phase velocity stays in a low plains at low frequencies, and
transits to a zigh plateau at high frequencies. The transition occurs at
lower frequency when the conductivity is smaller. At low frequencies,
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Fig. 3. Normalized wavelength of a coplanar waveguide on an in-
sulator—semiconductor substrate with the insulator depth as parameter,
G = 400 pm, ¢ = 10° U/m.
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Fig. 4. Attenuation constant of a coplanar waveguide on an insu-
lator-semiconductor substrate with the insulator depth as parameter,
G = 400 pm, ¢ = 10° U/m, the other parameters are the same as in
Fig. 3.

the attenuation constant with a low conductivity is larger than that
with a high conductivity. As the phase velocity transits from the low
plains to the high plateau, the attenuation increases. When the phase



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 9, SEPTEMBER 1996

0.05 o= 1040/111 0"'—'1000/1’]'1 4
0 L . o
101 102 103

Frequency ( MHz )

Fig. 5. Normalized wavelength of a coplanar waveguide on an insula-
tor—semiconductor substrate with the semiconductor conductivity as param-
eter, G = 400 pym, d = 20 um, the other parameters are the same as in
Fig. 3.
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Fig. 6. Attenuation constant of a coplanar waveguide on an insu-
lator—semiconductor substrate with the semiconductor conductivity as
parameter, G = 400 pm, d = 20 pm, the other parameters are the same
as in Fig. 3.

velocity falls in the high plateau, the fields tend to concentrate around
the center conductor, and the attenuation constant decreases. With a
higher conductivity, the rise of the attenuation constant occurs at a
higher frequency, and the magnitude is larger than that with a low
conductivity.

IV. CoNCLUSION

The variations of normalized wavelength and attenuation constant
with frequency of a coplanar waveguide on an inhomogeneous insu-
lator semiconductor substrate have been analyzed. A new eigenmode
approach is first proposed to solve the Laplace’s equation with
a complex permittivity to obtain the potential distribution in an
inhomogeneous stratified medium. The charge distribution on the
center conductor is then used in the quasi-TEM analysis to obtain the
propagation constant with different semiconductor conductivities and
insulator depths. A frequency range exists where the phase velocity
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rises from a low plains to a high plateau, and the attenuation constant
rises to a maximum then decreases. The transit frequency is higher
with a higher semiconductor conductivity.
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